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ABSTRACT

This report is concernad with the theoretical wave resis-
tance of an air-cushion vehicle (ACV) traveling over water of
uniform finite or infinite depth, in steady or unsteady motion.
Referring first to steady motion, it is shown that the un-
realistic oscillations in the wave resistance curve at low
Froude numbers found by previous workers can be eliminated
by using a smoothed out pressure distribution rather than one
with sharp edges studied exclusively in the past. The main
result of unsteady motion calculations is that the peak wave
resistance in shallow water, ever in modecrately accelerated
motion, is appreciably less than the corresponding steady-
state value. In fact, cases have been found where an ACV
starting from rest under the action of a constant thirust would
seem to be unable to cross the critical depth Froude number
on the basis of quasi-steady estimates of wave resistance,
while the more elaborate unsteady calculations show that it
has sufficient power to reach its final supercritical cruis-
ing speed. An interesting feature of unsteady motion is that
besides wave resistance there is another mechanism transfer-
ring energy to the free surface which is here called the dy-
nemic sustention power. Contrary to intuition, the wave re-
sistance in unsteady motion over finite depth sometimes be-
comes negative at supercritical Froude numbers before finally

approaching zero at infinite speed.
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NOMENCLATURE

half lenath of craft
1/2r7

frortal area of craft
half width of craft
velocity of ACY

drag coefficient
water depth
propeller diameter
aerodynamic drag
momentum drag

Froude number

depth Froude number

acceleration due to gravity

unit vectors in x, y, 2z direction

propeller advance ratio

wave number = yw? + u?
fundamentali wave number = g/c?
propeller torque coefficient
propeller thrust coefficient
length of pressure distribution
Laplace transform operator

mass of ACV

mass flow into air cushi~n
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PoprQop =

unit normal to free surface, directed inwardly
propeller speed of revolutions

cushion pressure

referencs cushion pressutre

power absorbed by propeller

Kochin functions defined by Eg. (3.14). They are
different from the Kochin functions defined by
Wehausen and Laitone (1960, p. 558) or by Eggers,
Sharma and Ward (1967), being greater by the
factor, c¢p-tcose .

Two-Dimensional Kochin functions, cf. Eqg. (3.28)
propeller torgue

wave resistance

distance traveled by ACV

area of pressure distribution

time

thrust of propulsor

induced longitudinal and transv- ‘se wave numbers
weight of ACV = mg

total rate of work done on water, cf. Eg. (3.9)
dynamic sustention power, cf. Eqg. (3.11)

power to overcome wave resistance = cR
coordinate system fixed to ACV, cf. Fig. 1

longitudinal coordinate in fixed reference frame

X1




a = longitudinal cushion fall-off parameter

B = transverse cushion fall-off parameter

Y = Jgk-tanh(kd)

E = water shallowness parameter

' = free surface elevation

n = propeller efficiency

f = wave direction with respect to the x axis

) = water density

On = air density

T = dummy time variable

¢ = disturbance velocity potential in moving frame

such that v = V¢

¢(n) = n'th term of asymptotic expansion for ¢
= d . 9 3
v = il *t iy * k3
_ 3 d
Vap = lax v 1y
SUPERSCRIPTS
*
= stationary frame variable
' = dummy variable
= Laplace or Fourier transform
. =3_.
ot
SUBSCRIPT

= vector quantity
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SUMMARY

This report is concerned with the theorastical wave re-
sistance of an air-cushion vehicle (ACV) traveling over
water of uniform finite or infinite depth, in steady or un-
steady rectilinear motion.

It is conventional in such an analvsis to model the
ACV with a given pro re distribution applied to the free
surface of an inviscid incompressible fluid and to use lin-
earized boundary conditions on the free surface.

The results obtained by this approach in the pact,
while in good agreement with measurements at high Froude
numbers, have raised two questions of practicai signifi-
cance. First, at low Froude numbers the theory predicts
an infinite number of unrealistic humps and hollows in the
wave resistance curve. Second, when the depth of water is
small compared to the length of the ACV, the steadv-state
peak wave resistance at the critical depth Froude number
becomes relatively high compared to the wave resistance at
the cruising speed, which is typically supercritical.

Tt is shown that the unrealistic oscillations at 1low
Froude numbers can be essentially eliminated by using a
smoothed out pressurz distribution in contrast to the sharp
edged distribution used by previous workers. Moreover,

for a rectangular distribution, this effect is mainlv pro-
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duced by the smcothing at the forward and after edges.

In resolving the second question, the primary consider-
ation was that such peak resistance can only represent a
transient phase in the practical operation of any ACV.
This naturally suggests tackling the unsteady motion prob-
lem, also in the hope that in accelerated motion the ex-
tremely long shallow water waves may never have enough time
to build up tc their peak values.

The unsteady theory indeed shows that at reasonable
accelerations, an ACV c¢an pass the critical depth Froude
number without encountering unreasonably high wave resis-
tance.

It is seen that in unsteady motion, besides wave re-
sistance, there is another mechanism transferring energy to
the free surface. This is the dynamic sustention power
and represents the work done by the pressure against the
relative vertical motion of the free surface 1in order to
maintain the altitude of the ACY. This is quite indepen-
dent of the static lift power required to support the air-
cuchion vehicle - even at zero speed.

Results of several sample calculations are presented,
including many for a two-dimensional pressure band which .s
relatively easy to compute, and exhibits the phenomena of
interest in a very accentuated manner. Contrary to intu-
ition, in two-dimensional unsteady motion, the wave resis-
tance, and even the total rate of work done on the free

surface (including sustention power) become negative  at

Xiv
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some supercritical speed, before finally approaching zero
at infinite speed. However, there should be no fundamental
objection to this phenomenon, as the ACV is merely recover-
ing some of the energy previously expended on the free sur-
face.

It is found that the Froude numker at which the maximum
negative wave resistance occurs can be predicted by an ap-
plication of the simpler shallow water theory - in which the
phenomenon is further accentuated. No region of negative
wave resistance was encountered for a three-dimensional
pressure distribution.

Finally, several cases of the inverse problem have been
calculated, which is aimed at determining the velocity pat-
tern for an ACV starting from rest under the action of a
propulsor of given thrust-speed characteristics. This 1is
treated in two different ways: calculating the wave resis-
tance in a truly unsteady manner, and on the simplified
guasi-steady basis., All other components of drag are as-
sumed to be strictly quasi-steady. The results show that
the shape of the propeller thrust and torgue coefficient
curves has only a minor effect on the velocity pattern. on
the other hand, the effect of overloading the ACV is found
to have crucial effects on its ability to surpass the criti-
cal depth hump.

In this respect, the simpler quasi-steady calculations
lead to unnecessarily pessimistic estimates of the veloaity

pattern. Under certain circumstances in relatively shallow

xv




water, the quasi-steady analysis would suggest that the ACV
could not overcome the critical hump with the available pow-
er, while the more elaborate unsteady calculations show that
it has indeed adequate power to reach its final cruising

speed.
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1 - INTRODUCTION

1.1 - PREVIQUS WORK:-

The hydrodynamic aspects of an air-cushion vehicle (ACV)
can be studied by assuming its action to be equivalent to that
of a pressure distribution acting on the free surface of the
water. This idealization neglects any physical coatact of
the lower edge of the craft with the water. It also assumes
that the flow of air escaping under th< periphery is inviscid,
and therefore nroduces no spray.

Havelock, in some of his early papers (1909, 1914 & 192¢)
was the first to treat the theoretical problem of the wave
resistance of a pressure distribution. His interest in pres-
sure disturbances lay in a desire to represent the motion of
a ship. As a results, most of the distributions that he chose
to analyse were very smooth and were not typical of the ACV.

However, later on, Havelock (1932) derived the general
expression for a pressure distribution traveling at a constant
Speed. In this paper, he also found the relationship between
the pressure acting on the free surface, and the equivalent
source distribution.

Lunde (195la) extended the theoretical treatment to cover
the case of an arbitrary distribution moving over finite depth.
Other workers have obtained numerical results for pressure

distributions which are directly applicable to the ACV. These




include Newman and Poole (1962) who considered the case of
motion in a restricted waterway such as a canal. They cal-
culated the two cases of a constant pressure acting over a
rectangular ares, and over an elliptical area. The most
striking feature of their results is the very strong inter-
action between the bow and stern portions of the distribut-
ion. Particularly for the rectangular distribution (where
the interaction would be greater), there are displayed a
series of humps and hollows in the resistance curve. A
hump occurs when the bow and stern wave systems are in phase
and combine to give a *trailing wave of & maximum height. A
hollow occurs when the two wave systems are out of phase by
half a wavelength giving a combined amplitude of a minimum
height.

The interference effects are found to be stronger for
large beam to length ratios, as would be expected from the
above argument, since the wave motion becomes more nearly
two-dimensional for a wide craft.

Barratt (1965) also computed the wave resistance of rec-
tangular and elliptical pressure distributions, but for the
case of unrestricted water. His results are to some extent
similar to those for the canal. In deep water, the main (or
"last") hump occurs at a Froude number given by F = 1//7.

In water of finite depth this hump is shifted to a lower
Froude number,; and for sufficiently shallow water occurs at a
depth Froude number, Fqe equal to unity {(i.e., at the critical

speed). One difference between these two sets of results is




(9]

pointed out by Newman and Poole. For a canal of finite
width, the theory predicts a discontinuity in the wave re-
sistance at the critical depth Froude number. The resistance
is higher just below the critical speed than just above it.
However, for an infinitely wide canal, there is no discon-
tinuity, but there is a sudden change in slope at the critical
speed.

Havelock (1922) also presented some results for a very
smooth precsure distribution over water of finite depth.
These, too, clearly show the shift of the main hump and the
increase in its magritude in shallower water, Havelock's
curves display only the main hump. The secondarv and other
humps do not occur because of his choice of pressure distri-
bution.

Recently a number of experimental programs have been
carried out in order to check the above-mentioned theoretical
results, Chief workers in this field are Everest (1966a,
1966b & 196¢7) and Hogben (1966a). The main question pointed
out in these papers is the resolution of the total drag on the
ACV into its components. These components are often consider-
ed to be: Wave Resistance, Aerodvnamic Drag, Momentum Drag
znd Water Contact Drag.

The aerc?ynamic drag {(or profile drag) is assumed to be
that resistance acting on the model if it were tested in a
wind tunnel with the engines not running.

The momentum drag is that due to the change in direction

of the air supplying the cushion as it enters the fan intakes




In fact, we should consider two components here: Inlet Mo-
merntum Drag, and Outlet Momentum Drag. The outlet moment-
um drag is associated with the changes in direction and ve-
locity of the air as it escapes from the cushion, and can be
either positive or negative, depending on the trim of the
craft.

The water contact drag is due to any touching of the
lower edge of the craft, or of the skirts, with the water.

Due to the extremely non-linear nature of this effect, the

i drag (or possibly thrust) due to spray from the cushion hit-

3 ting the craft is usually included with it,.

| While the first thr-e resistance components defined

i above may be studied from a theoretical approach, the water

5 contact drag only lends itself to an experimental study. To

; this end, Everest (1966a) estimated the water-wetting resis-
tance by eliminating it - using a thin polythene sheet floa-
ting on the water surface. This technique, however, intro-

E duces the guestion about the tensile forces in the sheet.

The resistance breakdown is further discussed by Hogben (1966a)

where he provides a careful definition of each component.
These experimental results were generally obtained by a

dynamometer measuring the total drag. Then the aerodynamic,

momentum and water contact drag components were estimated

and subtracted in order to make a comparison with the theore-

tical wave resistance. The agreement appears to be quite

good in regard to the range in values of the wave resistance.

However, the large scatter in the data makes it difficult to




draw precise conclusions. The authors suggest that, in
addition to the main hump, they can detect a secondary and
possibly a third one, and that these are out of phase with
the theoretical humps by no more than 0.05 on the Froude num-
ber scale.

An explanation given for the non-appearance of more humps
is based on the fact that the lower speed humps predicted by
the linearized theory correspond to a wave pattern whose max-
imum slope is too large from physical considerations. Hocben
gave a two~dimensional argument (1965) showing that the max-
imum ratio of wave height to length is about 1/7. This would
preclude the development of any humps above the third or
fourth (depending on the cushion pressure).

Furthar experimental work by Everest, Willis and Hogben
(1968 & 1969) dealt with the wave resistance of an ACV at an
arbitrarv angle of yaw. This problem was also studied theora-
tically by Muichy (1970). In these experiments, the wave
resistance was measured directly from the wave pattern. As
a result there is less scatter in the data since the rather
doubtful technique of estimating the wetting drag is elimin-
ated. The experimental results here are generally low com-
pared with the theory, the difference being usually limited
to about 10% but is occasionally as much as 50% at certain
Froude numbers.

The outcome of these investigations is that the main

hump drag is relatively large in relation to the installed

propulsive power of typical ACVs. In addition, the prob-




lem is more acute in shallow water where the thrust margin of
some craft has been found insufficient to surpass the hump.

It has been found recessary from speed and economic considera-
tions to operate in the cruising condition at a Froude number
of at least 1.3. This is well above the hump speed and the
wave resistance is accordingly smaller.

However, in a real situation, the craft does not operate
steadily at the hump speed. In fact, the procedure is to ac-
celerate through it as quickly as possible. Under a non-
steady condition it appears quite reasonable to anticipate
that the large amplitude wave pattern at the hump speed will
not have time to establish itself - thus leading to a less
aggravated problem in shallow water. Some experiments on a
rectangular model by Everest (1966b) confirm this. Under
certain conditions in finite depth he has found a reduced

resistance peak.

1.2 - PRESENT STUDY:-

-r

These considerations point towards a theoretical inves-
tigation of the wave resistance during accelerated motion.
Already, the problem for a ship has been treated by Sretensky
(1939}, TLunde (1951b, 1953a & 1953b) and Shebalov (1966).
These workers have derived the linearized result for the re-
sistance, but produced no computed values. Wehausen (1964)
computed the resistance of a ship model with a constant ac-

celeration from rest up to a speed which was then held fixed.




His results, however, consist of asymptotic expressions for
large values cf the time, and there are no data for the re-
sistance during the acceleration phase of the motion. Wehau-
sen's interest stemmed from a desire to know the required
length of a model ship tcst before the steady state resistance
is achieved.

With regard to the unsteady motion of a surface pres-
sure distribution, Havelock (1916) has computed the resistance
of two particular distributions whose motion is suddenly es-
tablished from rest, and then continued at a constant speed.
On the other hand, Djachenko (1966) has derived an expression
for the resistance of an arbitrary pressure distribution for
a general acceleration pattern. He also presented some re-
sults for a two-dimensional distribution.

The transient problem is of interest mainly for two rea-
sons. First, since a numerical solution to this problem will
make it possible to calculate the resistance history as a func-
tion of the acceleration pattern, one could expect to find op-
timum acceleration programs that would reduce the peak wave
resistance, or the peak total resistance.

Second, it is of interest to examine the inverse prob-
lem: the resulting motion under the action of a propulsive
device of given thrust-speed characteristics. This is, of
course, the more natural problem and any theoretical results
could also be checked by experiment.

It is believed that there is more justification for ap-

plying the linearized theory to the transient, rather than




the steady, problem because of the diminished likelihood of

an excessively steep wave system building up.
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2 - THE POTENTIAL FUNCTION

2.1 - PROBLEM STATEMENT:-~

The air~cushion vehicle will be represented by a pres-
sure distribution p(x,y) acting on the free surface, and
traveling with the speed of the craft. Two right-handed
coordinate systems will be used, as shown in Fig. 1. The
system xyz moves with the craft, z being vertically up-
wards and x being in the direction of the rectilinear mo-
tion. The second axis system x*yz is fixed in space.

The relaticnship between the coordinates is then given by

*
x = s(t)

b
1}

t
= x - I c(t) dr, (2.1)
0

where ¢ and s are the velocity of the model, and its dis-

tance traveled, respectively.

The velocity potential satisfies the Laplace equation:

*2 *
v o =0, {(2.2)

*
where ¢ is the velocity potential in the stationary frame
(such that the velocity is the positive gradient of the po-
*
tential), and V also implies differentiation in this frame.

If ¢ 1is the perturbation potential in the moving frame, we

9
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may say that

t(x,y,2,t) = ¢*(X*1errt): (2.3)

*
if x and x correspond to the same point in space. From
Eq. (2.1} we have

= (2.4)

so that Eq. (2.2} may be written as

vi¢ =0 . {2.5)
The kinematic boundary condition on the free surface re-

quires that a particle on it remains there. That is,

D -
5T [z - C(x,y,t)] z=r = 0, {2.6)

where ¢ 1is the elevation of the surface. In terms of the

moving coordirates we have

where u, v and w are the perturbation velocities, Com-
bininc this with the exact kinematic condition, Eq. (2.6},

and substituting fcr u, v and w:
[¢z'-ct S c)cx-¢ycy] = - 0.

At this stage the second order terms may be dropped, and the

remaining terms written as a Taylor expansion about the
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Finally, the linearized kinematic condition orn the free sur-
face may be obtained by dropping the higher order gquantities

again:

[¢z]2=0 —f tcr = 0. (2.7)

The dynamic condition on thn surface - the Bernoulli equa-

tion - in terms of the stationary coordinates is
* 1 * 2 *2 *2 E *-
[¢ et 7(¢ T e y +t b, )] 2=t + =+ g; = f, (2.8))

where p 1is the water density and g 1is the acceleration due
to gravity, while f is an arbitrary function of time.

Again, we may drop the sguared terms as these are of higher
order, In addition, £ may be put identically to zero with-
out loss of generality. Alsc, from Egs. (2.1) and (2.3} we

have
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Thus Eg. (2.8) reduces to

[¢t - c ¢x]z=c + % +gp =0.

Ps before we may expand the first term in a Taylor series
about 2z = 0 , and then drop the higher order terms to ob-

tain the linearized dynamic condition:

_
[¢t - c ¢xJz=0 +B+gr=0, {2.9)

The combined free surface condition is obtained from

Egs. (2.7) and {(2.9) after eliminating ¢ :

[¢tt + cz¢xx - 2cC ¢xt - cC ¢x +g ¢z]z=0 = ¢ px/p . {2.10)

The last boundary condition to be satisfied is that

there is no flow thrc ugh the water bed:

[¢z]z=_d =0, (2.11)

where d is the depth of the water.
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2.2 - SOLUTION FOR THE POTENTIAL:-

The solution of this set of equations can be obtained by

an application of the double ¥Fourier transform pair:

o]

E(w,u) dx ’ dy f(x,y) exp(-1i(wx + uy))

!
-
g ———

and f{x,y) = %F [ dw I du £(w,u) exp (i(wx + uy),

and the Laplace transform pair:

[=<]

flq) = l f(t) exp(-gt) dt
0
S+io
and fi{t) = E%I J E(q) exp {gt) G,

§=ic

§ bhaing a positive constant.

(2.12)

’

(2.13)

Using the rules for transforming a derivative, the La-

place equation (2.5), under the transformation (2.12), be-

comes:
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(iw)zg + (iu)zg + ;zz =0 ,

where ¢ = ¢(w,uzz,t) .
Hence ¢, = k¢ =0,
where k2 = w? + u? . (2.14)

H

A solution for ¢ is

4 = Alw,ust) cosh(kz + B(w,u;t)) , (2.15)

¢

where A and B are, at the moment, arbitrary. B may be

found by transforming the bed condition, Eq. (2.11), giving

and substituting Eq. (2.15). Thus
[A-k-sinh(kz + B)]z=_d =0,

giving B = kd

and ; = A cosh(k(z + d)) . (2.16)
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Applying now the Fourier tvansfcrm to the combined free
surface condition, Eg. (2.10), and using ¢ given by Eq.

(2.16) , we obtain

[itt.cosh(k(z +4d)) + cz(iw)zi-cosh(k(z + d))

- 2criwtA ccosh(k(z + @) - criw*A<cosh(k(z + 4))

+ gkesinh(k(z + d))] 7=0 = ceiwep/p

Or, more simply,

~
-

A, - 2icw-At + A(y? = c?w? - icw) = icw-sech\kd)-% , {2.17)

in which y? = gk tanh{kd) . {2.18)

A substitution that makes the coefficients in Eq. (2.17)

constant has been found by Lunde (1951b). It is
A{w,uzt) = y(w,u;t) expl{iw-s(t)) . {2.19)

After putting this in Eg. (2.17), and some simplification,

one obtains

~

Y = icw-sech(kd)-%-exp(-iw-s(t))
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We now take the Laplace transform, Eq. (2.13), of the

previous equation to get

e
~

(g2 + y2)y = iw-sech(kd)-%~L(c-exp(—iw-s(t))) ,

where [ 1is the Laplace transform operator. Thus

-

; = i-%%-sech(kd)-L(sin yt) e L{csexp(~iw:s(t))) .

Using the convolution checorem to perform the inverse

Laplace transform of this, we obtain

t
; = i-%%-sech(kd) c{1) *sin{y{t - 1)) -exp(-iw+s(1)) dr .

Y

Egs. (2.19) and (2.16) are now used, together with the

above equation, to yield

-~ ..Eﬁ.cosh(k(z + d))

$ = i 5 Sosh (kd) c{t)*sin{y(t - 1))°

rexp (iw(s(t) - s{1))' a1 . (2.20)

The double Fourier transform, Eq. (2.12), can be used

to express 5 in Eq. (2.20) in terms of p, and then the
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invers2 transform is taken to give the disturbance potentiai,

¢ , in terms of the moving coordinate system, xyz

t o0 P
!
$(x F t)=-j;—- g' ds' c{t) drt [ dw [ du
1Yi2, anlo ] l
4
st ¢ -0 -

| wecosh(ki{z + 4))
Ygk+tanh (kd) * cosh (kd)

-sin[/gk-tanh(kd)-(t - T)].

'exp[i(w(x - x' & s(t) - 5(1)) + uly - y'))] . (2.21)

Here k2? = w? + u? as before, and p' = p'(x',y"') , defined
over the area S' , while x' and y' are dummy coordinates

in the moving reference frame.




3 - THE WAVE RESISTANCE AND SUSTENTION POWER

3.1 - DEFINITIONS:-

In this section expressions for the wave resistance will
be derived. Also the computer studies showed that under cer-
tain circumstances this resistance could become negative.

Hence it is of interest to examine the total rate of energy

input to the water, as well.
Using the stationary frame of reference, the wave resis-
tance may be defined as the horizontal component of the cush-

ion pressure force acting on the free surface. Thus

% * * *
R = p (x ,y,t} C x* dx dy ,

»

*
where the superscript indicates that the variable is
given in terms of the fixed frame. This formula may be ex-

pressed in the moving frame as

R = pi{x,y) %y dx dy . {3.1)

18
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Now the power input to the water (in the fixed frame)

is

. * * * * *
T = ’[ p (x ,y,t) n v ds , (3.2)
*

S

where n 1is the vnit normal vecior at the free surface and
directed inwardly, and v is the velocity of the particles

of water on the surface. By definition

n = ( i+ j - k)//é + . )2+ | § )% (3.3)
B = oy 270, )72 T y* Ly '
* * * *
and v = ) X* % + ¢ y 2 + ¢ 3 ]_S . (3.4)

In the stationary reference frame, the kinematic con-

dition on the free surface is
D * *
BE' (Z - C (x ]Ylt)) % = 0 r

* * Y 1
or [¢ . ¢ -t $ y " z £ 2=C* =0 . (3.5)

In addition, we have
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* * / * 2 * 5
ds = dx dy ¥l + (¢ x*) + (¢ 3 . (3.6)

1f we now combine Egs. (3.2) to (3.6), we obtain

. * * * *
wT = = p (X rYrt) 8 t dx dy N (3.7)

*
5

A transformation to the moving frame is now in order,

and using the relation

(3.8)

the final expression for the total rate of work done on the

water results:

]':]T = [' P{er] I:c Cx == Ct] dx dy . (3.9)
5

Note that the expressions for the resistance and total
power (Egs. (3.1) and (3.9)) are exact - they have not been
linearized. The total power contains the power required to

overcome the wave resiscance:
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W.=cR. (3.10)

The other part of the total power we shall call the sus-

tention power:

pi{x,y) - dx dv ., (3.11)

7
r—

Thus the sustention power represents the rate at which
work is done by the cushion pressure against any vertical
motion of the free surface, and is positive for an average
downward movement. This power term should not be confused
with the power required to provide the air cushion. The
sustention power would come from changes in gravitational
potential energy of the ACV, as it heaves and trims during
the unsteady motion. During steady motion, the position of
the free surface does not move relative to the craft. In

this case the sustention power is zero.
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3.2 - WAVE RESISTANCE:-

We use Eq. (3.1) defining the resistance, and the dy-

namic corndition on the free surface, Eq. (2.9).

Qe

” . [[c byx * Pex) 20 - px/p] ax ay .

S

After integrating with respect to x , the last term in

the integrand gives

w
1 [ 2
- P (x,y)J dy
209 J x= '
which is zero for any typical distribution. We may now sub-
stitute the expression for ¢ given by Eq. (2.21), and af-

ter some reduction, obtain

t =] ©
R = I?%EE [J p ds JJ p' ds' J c(t) ar J dw J du
0 @ -

S s'

w2°cos[/gk'tanh(kd)'(t - T)]‘

'exp[i(w(x - x'" +s(t) - s(t)) +uly - y'))] . (3.12)
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Since we only require the real part ¢f this equation, we

rewrite the exponent factor as

factor = cos|w(x - x' + s(t) - s(7)) + uly - y')]
= cos|w(x - x") + uly - y') |*cos|wis{t) - s{1))
- sinfw(x -~ x') + u(ly - y'") lssin|w(s{t) - s{1))

The second term on the right Land side is odd with respect
to the pair x - x' and y - y' , and therefore contributes

nothing to the integral. Expanding the first term, now,

factor = [Pos(w(x - x'})ecos{uly - y"))
- sin{w(x - x")}+.sinfu(y - y'))]-cost(s(t) - s(r))] .

This time the second term is odd with respect to w and u ,
and therefore gives no contribution. We may expand the fac-

tor a third time to yield

factor = [cos(wx)-cos(wx') + sin(wx)-sin(wx')]x

{continued over)
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a[cos(uy}-cos(uy') + sin(uy)-sin(uy')]x
»cos[w(s(t) - S(T))] .

If we place this factor back into Eq. (3.12), the de-

sired expression for the resistance is cbtained:

t o o
— 1 2 2 2 2 2
R = ~lis J c{t) drt [dw ! du w [Pe + Po + Qe + Qo x
0 0 0

xcos[/@k-tanh(kd)-(t - T)]'COS[W(S(t) - s(r))] , (3.13)

[
where :e = JJ p(X,y) ggi(wx) g?i(uY) dx dy
° s
(3.14)
0 ( .
and Qe = J[ p{x,y) zég(wx) ggi(uy) dx dy .
° s

1t is interesting to compare Eg. (3.13) with the ex-
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pression obtained by Lunde (1951b) for a ship. An addi-
tional term consisting of a fourfold integral, and being sim-
ply proportional to the instantaneous acceleration, occurs

in his formula. It represents a type of added mass, and is
zero if the singularity distribution lies on the free sur-

face. This is the case of a pressure distribution.

3.3 - TOTAL POWER:-

The total power is defined by Egq. (3.9). Using the

kinematic condition, Eq. (2.7), the power may be written as

The equation for ¢ , Eg. (2.21), is now substituted to

give
0]

t =]

: -1

Wy = Triog [J p ds !J p' d4s! J c(t) drt J dw J du
0 ™

S St —» -

w-/@k-tanh(kd)-sin[/bk-tanh(kd)-(t - 1)]-

-exp[i(w(x - x' + s(t) - s(1)) + uly - y'))] .
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[

Thio oxprevssion wmay now be simplified in a manner iden-
tical to that used on Bg. (3.12) for the resistance. We

then obtawn ror the total rate of work done on the water by

/ [
W, .iwm-; e : dw | du weJgketanh(kd) x
! S !
b ! |
o 0 0
[ . :l
P + N -0 O ~
L O (S e}
i ak e vani(Rd) - (e - wJ}-sin[w(s(t) - s(r))] . (3.15)

Sod = TiEADy WA WAVE RESISTANCE: -

ho shteady state resistance may be obtained from

Fo, 13,0030 vy letting the velocity of the medel be constant
Yor o a Tone ot Poroexample, if we take the velocity of
o STR I A o suddenly established, and then fixed at a

vadun ©o, toe time dntegral in Bg. (3.13) may be carried

EEST AVAILABLE COPY
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x[sm(y + we)t | sin(y - wc)t] , (3.16)
Y + weC Y - WC
with v? = gk-tanh(kd)

g/u? + w2.tanh(Yu? + w®.d) ,

as before.

We want to know the value of R for very large time.
As t +» » , the oscillations (about ze'0) due to the sine
terms increase, so that there is no contribution to the in-

tegral except when

y-wec=20. (3.17)

Eq. (3.17) gives the relationship between the trans-
verse and longitudinal wave numbers for waves which travel
at the speed of the model. We may now quote the following
result from Wehausen {(1964) or Wehausen and TL.aitone (1960,

p. 477):
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tl{m. £ (x) §1Q(§_:_%;l£ de = 1 f{xy,) 1if a < xg < b .

a

It is required here that f 1s smooth in the neighborhood

of x = =, , and that f(x)/x 1is absolutely integrable in

the range, The theorem below may then be derived from this
result:
b
o | in g(x)t
i | sin g{x _ .
R X €Y T =T { EGx)/{g" (x) [, (3.18)
/ i
a

where x, are the zeros of g(x} , assuming that a < X; <

and g'(xi) £ 0,

First we rewrite Eg., (3.16) in terms of polar coor-

dinates:
w = k cos @& ,
u =k sin o , (3.19)
w, )
ok, 0) !
and then apply the second theorem to the k iuntegral, It

1s seen that 1f

gilk,") = vy - wc

o]
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or g(k,8) = Jgk-tanh(kd) - ck-ccs & ,

then l%E g(k,a)‘ = %c-cos 8 [l - kodasec’e-sech?(kd)] ,

where k 1is the solution of
k - ko sec’g-tanh(kd) = 0 , (3.20)
with k, = g/c? . (3.21)
If we now make the necessary substitutions detailed

above, Eq. (3.16) reduces to the following single integral

for the resistance of an nCV during steady motion:

/2
R = L k® cos © "
Tpg 1l - kyd-sec2p.sech? (kd)
81
2 2 2 2 3 3.2
x[Pe + P S+ Q40 ] ds . {(53.22)

Here the lower limit for o6 1is taken as 6, , the
smallest positive value of 8 which can satisfy Eg. (3.20)

for a reai k . It is given by
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0 for kod >~ 1 (subcritical speed)
(3.23)

- arccos ,k,d for k,d < 1 (supercritical speed)

Fg. (3.22) is the same as that given by Barratt (1965).
It may also be reexpressed as an integral with respect to the

wave number k , through the ccnnecting relationship given by

Ec., {3.20). The result is
R = K k_tanh (kd) [Pez AT R Qoz] dk
"9 | A - k, tanh(kd)/k
X
(3.24)
Here k, 1is given by the solution of
kl = kg tanh(kld) if kod > l 7
(3.25)

or kl =0 if kod < 1

It may be noted in passing, that we could obtain the
steady state value c¢. the total power, Egq. (3.153), in a sim-
ilar manner. In that case, after integrating Egq. (3.15)
with respect to time, we would get the following expression,

instead of Eg. (3.16):
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y = . ¢ . . 2 Z 2 2
W T7Tog [ wdw | duy [Pe + PP+ Q7+ Q ]x
0 0

. - sinly + wo)t + sin(y -~ wc)t
y + wC Y — WC

As iin the case for R , the only contribution to WT '
as t +» » , is given by the second sine term, And this
occurs when y = wc ., It is clear then, as the steady-

state condition is achieved, that

=W ’

as regquired,

3.5 - TWO-DIMENSTIONAL WAVE RESISTANCE: -

It is of interest to study the wave resistance of a two-
dimensional band of pressure since this shows up clearly the
interference effects of the transverse wave system.

A possible method of solving this problem would ke to

set up a two~dimensional analog of Sec.(2) - for the potential,
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, - and then solve this. However, it is simpler to con-
sider a pressure distribution independent of y , and then

let. the beam approach infinity. Thus we assume that

plx,y) = pZD(x) for -b <y <b ., (3.26)

The Kochin functions (see also the Nomenclature),

Eg. (3.14), become

2 sin(bu)

pe - u pZD '
P =0,
o
{(3.27)
2 sin(bu)
Qe u Q?D
and Qo =0,

where the two-dimensional Kochin functions are given by

cos

x) :
5in

PzD( (wx) v , (3.28)

L being the length of the distribution.
Let us now consider the u integral in Eq. (3.13) for

the wave resistance. We have, for the wave resistance per
4

unit width,
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o
it

2D R/2b

xcos[w(s (t) - s(r)):'x

1//b =
x 1 + J cos[/gk-tanh(kd)-\\; - T)] Lsin bu) 4,
1/+b

in which we have broken the u integral into two subranges
as indicated. After a change of variable, the first of

these u integrals beccmes

Vb
I, =2 cos[/c_:;./w2 + #2/bZ.tanh(/w? + 42/b2.d)-(t - T)]X

.

et 74
X'S:LEZQ dfb

As b » = , this simplifies to

o

2 2
I, = 2 COS[/gw-tanh(wd),(t - T)J ’ 511;.29 d¢\ .
0
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This integral is given, for example, in Gradshteyn and Ryzhik

(1965, p. 414, 3.74{, Formula 3). Thus
I, = = cos[vﬁw-tanh(wd)-(t - T)] .

We shall now examine the second of the u integrals,

.' I, . It is easily seen that

. 2
= bu?2

du = 2/vb .

% Thus, as b > = , I, =10,
The formula for the two-dimensional wave resistance may

now be written es the following double integral:

t 14

o1 2, 2 2
R2D = s (1) dr dw w [p2D + Q2D ]x

0 0

*cos[r@w—tanh(wd)—(t - T)]-cos[w(s(t) - S(T))]. (3.29)
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3.6 - TWO-DIMENSIONAL TOTAL PGYI'R: -~

The procedure for finding the limiting expression for
the total power, Eg. (3.1%), in the case of two-dimensional
flow, is identical to that given in Sec. (3.5). The result

is

t [§%)
. l ? )
Wrop = s J c(v) dr [ dw w/gW'ta“h(Wd)'[pzn ¥ QzD']\
0 0

xsin[/bw-tanh(wd)-(t - T)]-sin[w(s(t) - S(T))J .

(3.30)

3.7 - TWO-DIMENSIONAL STEADY-STATE WAVE RESISTANCE:-

We now derive the two-dimensional limit of Eg. (3.22).
The procedure followed is similar to that in Sec. (3.5) and

the result is

= k*? ; ,
ep—= pg 1 - kgdesech? (kd)] [PZD + Qp ] ' {3.31)

k being the sclution of k = k; tanh(kd) . (3.32)
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If kyd - | (the supercritical speed condition), then
there is no real solution of Eg., (3.32), and the wave resis-

tance is zero.
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4 - STEADY-STATE RESULTS

4.1 - PRESSURE DISTRIBUTION USED:-

As mentioned in Sec. {1l), it was felt that it would be
necessary to allow the cushion pressure tc drop to zero wi-
thin a finite distance at the periphery of the craft. The
actual details of this fall-off are discussed by Hoaben (1966b)
and Alexander (1967) for a periperal jet ACV, and by Jones
(1966) for a plenum chanber machine.

However, it is unlikely that the precise way the pres-
sure drops to zero 1is crucial. Rather, the essential para-
meter is a measure of the fall-off distance. The restric-
tion of planform shape to a rectangular one was made, since
the smoothing effects of an elliptical design were studied
by Barratt and Newman. The general pressure distribution
given below allows the fall-off distances to be individually

varied:

pi{x,y) = % pe | tanh a(x + a) - tarh a(x - a):’x

tanh B{y + b) - tanh B(y - b)] . (4.1)

X

Here ©py 1is the nominal pressure, a is the half-length

and b is the half~beam, The smoothness of the cushion

37
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pressure fall-off at the edges is a function of the fall-off
paramcters o« and » . A large value of o implies a
rapid drop at the bow and stern edges,. On the other hand,
if + 1is large, then the cushion pressure decays rapidly at

the sides. This function is shown in Fig. 2.
As a particular case, we may consider the limit as

o w, Then the pressure is given by

P = % Po [tanh a{x + a) - tanh a{x - a)]

for -b < x <b (4.2)

= 0 otherwise,

This could represent a so-called sidewall air-cushion vehicle
or captured air bubble (CAB). In these craft, the cushion

is physically restrained at the sides so that the pressure

falls abruptly.

Another particular case occurs when both a » « and

B+ o Then

P =pe for -a < x <a

and -b <y <b (4.3)

=0 otherwise.

1hls case of a constant pressure acting over a rectangular

area is one commonly used by previous workers.
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It is advantageous to obtain analytic expressions for
the Kochin functions, Egq. (3.14). Due to symmetry in the

chosen expression for p , it is clear that
P =Q =Q =20. (4.4)

Furthermore, Eq. (4.1) allows us to compute Pe as the pro-
duct of two separate, but similar, integrals over x and v,
respectively. The contour used for evaluating the integral

is shown in Fig. 3. We write the x integral as

=]

I. = Real [tanh af{x + a) = tanh afx - a)] WX ax . (4.5)

X

=0

Because of the finite “engths of the paths of integration
for I, amrd I; in Fig. 3, it is clear that as M » « ,
I, =I; =20, Also, along C,; , points corresponding to x
on C are given by x + in/a . It can then be shown from

Eg. (4.Y) that
IZ = =- g I . (4-6)
There are two simple poles lying inside the contour,

and after applying the usual residue theorem, and come sim-

plification, it is found that




anal

40

sin{aw)
% 2 v sinh(n1w/2.1) 4.7

The y integral in PO may be written down by inspec-

tion, so that the final result for the Kochin function is

r sin{aw) 7 sin{bu) (4.8)
a sinh{ww/2x) 2 sinh{su/2R8) ° :

P_ = py

P has well defined limits for the cases specified by
Egs. {4.2) and (4.3).
Finally, by integrating the pressure distribution, one

obtains the weight of the ACV:

W= 4 p, ab . (4.9)

4.2 - NONDIMENSIONAL COEFFICIENTS:-

The wave resistance coefficient used is defined by

R =
C

=i

22 (4.10)
Pa

and the power coefficient by

Wa = ol (4.11)
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4.3 - RESULTS:-

The programs used for computing the steady-state resis-
tance are documented by Doctors (1970, Sec. (10.1}).

Some curves for the wave resistance are shown in Figs. 4
to 7 inclusive, In these diagrams, the variable used for the
abscissa is A = 1/(2F7) . This results in the low speed
interference oscillaticns havinog a period approaching a con-
stant value of 21

With regard to the ordinate, an arcsinh scale is oc-
casionally used to improve the presentation of the results.

This transformation is defined by

—
Fa
N
(3]
LS,
ph—

Yp = Cy arsinh(C.y) .,

where y 1s the number to be plotted and Yp is the distance
on the figure. C; and (C,; are constants.

In Fig. 4a, the eff=ct of smoothing on a two-dimensional
pressure band, that is, reducing the value of the parameter
aa , is illustrated. For o0a = » , we have a sharp pressurc
distribution and the amplitude of the oscillations ~f the
wave resistance remains unchanged with increasing A (de-
creasing speed). The theory predicts an infinite number of
these oscillations between zero speed and any finite velocity.
The curve is a sine wave and this result was obtained by Lamb
(1932, p. 403).

For finite values of the pressure fall-off parameter,

®a , the oscillations die out with decreasing speed. If
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a 5 , then there are only three major humrns, The humps
and hollows are caused by the insarferzsnce of the bow and
stern vave systems, which are purely transverse in this ex-

‘erence is rot affecled by the s=cothing.

[}
3
o
1
=1
jny

azxple, The
However, the smoothinc reduces the amplituede of the waves

generated 'y the bow andéd siern,

Fig. 3t shoes the effect of sacvthing a two—iimensionzl
pressuve band for a finite depth. The resistance is zezo

for supercritical speeds (whern Fd > 1 ) because {ree waves
cannot travel faster than the critical speed.

Three cases are illustrated in Tig. 5a. Case 1, with

= ‘a = . Tepresents 2 sharp pressuve €istributicn with

[

¥
4 bezx to lengih ratic cf 9.3 traveiing over deep water.
vhe unrealistic oscillations obtained by previous workers are
confirmed. It ehould be noted that for low speeds the amp-

itude of the oscillations asymptotically approaches unity -

Bt

the saze as fcor the two-dirensional case. Thas the trans-
verse waves beccme relatively =ore important in this speed
range. Case 3, with :2 = 332 = 5 , has smocthing applied
on u.. four edges, and once again, only abouat three cr four
humps occur. nixiie tvpical valves of 1a and :fa would
have tc be found from measured pressure distributions, this
curve could represent an actual ACV. Finally, Case 2 oniy
nas smocthince at the bow and stern - eguivalent to a side-
wall ~CV. The resclt i1s almost the same as for Case 3,

showing that the wave pattern is essentially produceéd by the

fore and aft portions of the cushion - and not the sides.
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The effect of smootking egqually on all fouvr cdges is ai-

so displayed in Fig. 5b. The sharply ecged cuase 1s comnared

o

with tlose of three different amouncs of smocthing. The di
gram shwws that for 21a = Za > 3 an unnaturally large num-
ber «f lcw speed humps ané hollows occur.

Fig. 5c shows the same three cases ol Tiz., Za. it for
2 finite depth, The chief difference now is that the «main
hump is pushed tc the right anc cccurs near the ori
Ffroude number. The low speeé humps are only —arsinai.; al-

fected.
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The effect of varving the beam o leaxgth ra
picted in Pig. 6. Fig. 62 iz for dee¢w water. The ganeral
2ffect is an increase in the maxima of the resisiance coel-
ficient for increasing beam, since the iransverse waves 2s-
sume greater importance as the two-dimensicnal case is ap-
proached. At the same time, the minima are reduced Igr tha
same reason. A secondayy effect is a shift in the location
£ the osciliations. As the beam increases, this shift is
to the right {i.e., tc lower Froude numbers). In she Swo-
dimensional limit the nhollows occur precisely at wvalues of
A = n- , vhere n 1is an integer.

The result of varving the beam is again sheown 2o Tig. €0
but now for a finite depth. Similar ecifects are shown in
the low speed range, away from the neichborhood of the cri-
tical cspeed. However, the position of the critical speed

hump is hardly affected. For finite beams it occurs at a

slightly lower speed than for the two-dimeasional case.
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Fig, 7 illustrates the result cf varying the depth of
water. ffach ot tne five diagrams is for a different beam

tc loenzth ratio. They show how the critical <epth bump
resistance increases with decreasing depth. For the two-
dimensicnal case, this pear resistance varies as the inverse
sguare of the depth. Howev:r, for finite beam to length
ratios, this maximum drag woes not increase neariy as rapidly
in shallow water.

Arother aspect brought out by these diagrams is the rate
ar which the resistance curves for different depths, but tie
same beam, convergs at large values of A . Thus, for
values of 2 greater than 3 , the cazse of d/a =1 3is in-
distinguishable from the deep water case. Anrd at d/a = 0.5,

the resistance curve is essentially the same ay that for any

greater depth, provided that A is greater than 6.




5 = CALCULATIOQLS FOR ACCLLLRANTED MOTION

5.1 ~ TWO-DIMEMSIONAL RLSULYS:~

Sample resulis for acceleratcs —2Il0n Are 300WN 1N
Figs. § to 18, All but Fig. 9 were congutes Ly orograms iis-
ted by Doctors (1970, Scc. (iC.2)). Altnough tneLe proaranis
can handle general acceleration patterns, oni
cerresponding to a coastant acceleraticn are presontild aare,

Various two-dimensicnal results are civen in Figs. 8
to 12. Fig. 8 shwws the effect of varving the level of ac-
celeration for a smooth pressure band over Ceep water.

There are only two humps displayed when the acceleraticn is
ncn-zero. The third and higher order humps have been smoctii-
ed out by the unsteady motion. Furthermore, with increasec
acceleration up to 0.2g , the second last hump is aiso prac-
tically lost. The last or major hump is also scmewhat re-
duced, but evidently any significant reducticr can only te
achieved by an application of an unnaturally high accelera-
tion.

The location of the humps is alsc affectec by the ac-
celeration. With increasing acceleration, the oscillaticns
are delayed to higher Froude numbers.

The case of a sharp two-dimensional pressure band is
shown in Fig. 9. A complete curve could not be computed be-

cause of the (apparently) infinitely many oscillations that

45




i6

occur in the reg:on where A 1is just less than 5 ({for the
case of c¢/g = 0,05). The last two humps, and the last
hollow, correspond in pos:ition with those displayed for a
smooth pressure band in Fig. 8. Thus, the smoothinc does
not affect tine positions of the oscillations - as was also
xvident feor steady motion,

The resistance coefficient is constant anc¢ equal to
anity for A > 5 . The significance of this point lies in
the fact that the ACV has traveled one craft length when
A =5, at an acceleration of 0.05g .

From geometrical considerations, it is clear that there
can be no interference effects between the bew and stern
transverse waves until the craft has moved this distance.

Up to this point in time, the bow and stern individually pro-
duce a wave train of varying wavelength (depending on the in-
stantaneous velocity), but of constant amplitude. Let us
cal: this amplitude g, . Then, before the band has moved
one length, there are two wave trains prcduced, each con-
taining energy per unit area proportional to :,? . The
wave resistance of the two waves in this speed range is then
proportional to 2r,? , arnd is constant.

When the band has traveled one length, the stern waves
of finite wavelength start to run into the bow system that
was produced at the start of the motion. These latter waves
have a vanishing'v smali length, As a result, there is an

infinite accumulation cf the interference oscillations in

the resistance curve just to the ieft of A =5 .
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However, later on in the motion, the twc wave systems
have a relatively more similar wavelength, or freauency, and
ther have a capability of combining tc zive 2 maximum amp-
litude of almost 2¢; , or a minimum amplitude near zerc.
Hence, the wave resistance can fluctuate between (.0)° and
(-2r,)° at the higher speeds. So the reak interference
resistance is almost twice as high as the constant value oc-
curing before the band has traveled one length.

For a general acceleration level, the point where the

oscillations start is civen by

A, = g/4c . (5.1)

tlence, for higher accelerations, A, is smaller ard the os-
cillations arz displaced further to the left. This explains
the general effect of acceleration on the location of the
humps and hollows in Fig. 8.

Resistance curves for a smooth distribution appear avain
in Fig. 10, but the water now has a finite depth. The re-
duntion in magnitude of the peaks is eve:u more marked. In~-
deed, wnile the maximum steady-state resistance increases
without limit in shallower water, the peak resistance ccef-
ficient for accelerated motion is more nearly fixed. Thus
the relative reduction during unsteady mcticn is accentuated.

The location of the unsteady finite depth humps is af-
fected in the same way as in deep water, being delayed to a

higher speed.
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"he most striking phenomenon, however, is that for zll
the finite depth cases studied, the wave resistance becomes
negative beyond a certain velocity. The resistance then
asymptotically approaches zero frem below.

Cther interesting features of the two-aimensional case
are presented in ¥igs. :1 and 12. These show the totail
power, resistance pswer and sustention power - which were
discussed in Secs.(3.1) and {3.3). The total power, being
the sum of the other two, represents the total rate at which
work is being done on the water. 1t was computed in order
to see if it remained positive when the resistance became
negative. Fig. 11 shows these three powers as a function cof
time, for different acceleration levels over deep water. 1t
is seen that a hump in the resistance power or total power
curves generally corresponds to & hollow in the sustention
power curve. 1t may also be noted that the sustention
pewer is relatively small ccmpared with the two other quan-
tities.

Passing now to the case of finite depth, Fig. 12, we
notice that the total power alsc becomes negative, and at
approximately the same point in time as the resistance chan-
ges =1ign. In shallower water, these two points approach
each other. At a depth to half-length ratio of 0.25, the
points where the total power and resistance power become
negative are indistinguishable.

In interpreting the occurrence of negative total power,

it should be borne in mind that the total energy input to the
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water, integrated from zero time, is always positive. How-
ever, at very high speeds the ACV begins to recover from the
wave pattern some ot the energy previously expended in form-
ing it. The location of the negative hump in the resistance

curve is further discussed in Sec. (6.6).

5,2 - THREE-DIMENSIONAL RESULTS:-

Some computed cases for a three-dimensional pressure
distribution are shown in Figs. 13 to 18.

The resistance over deep water is shown in Fig. 13.

The similarity toc the two-dimensional analog in Fig. 8 is to
be noted, The three-dimensional resistance is generaily
about half that of the two-dimensional case {(for this bcam
to length ratio). Also the oscillations occur at slightly
higher Froude numbers, due to the additional effect of the
diverging waves. These same two differences display them-
selves in the steady-state results in Fig. 6.

The influence of acceleration on the resistance of a
three-dimensional ACV over finite depth (Fig. 14) is seen to
be remarkably less than for the corresponding two-dimensional
situation. Again, it must be remembered that the steady-
state two-dimensional results showed stronger phenomena than
the three-dimensional ones. Principally, these were stronger

interference oscillations, and zero resistance beyond the
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critical speed.

0f chief interest in Fig. 14, compared with Fig. 10,
is the lack of any speed range in which the resistance is
negative. This indicates that the transverse component of
the wave pattern is less important than the previous steady-
state results implied.

“he three-dimensional results, nevertheless, show a
supstantial reduction in the peak resistance during acceler-
ated motion, particularly for the shallower situations.

Beyond the last hump, the curves of resistuance for dif-
ferent levels of acceleration converge rapidly, as the speed
increases. Beyond A 3 0.5 (F 3 1.0) the acceleration has
little effect.

For the sake of completeness, curves of total power,
resistance power and sustention power are given in Figs. 15
and 16. The deep water case (Fig. 15), again, is similar
to the two-dimensional case in Fig. 1l. The finite depth
results in Fig. 16 do not differ considerably from the deep
water results of the previous figure - in contrast to the
two-dimensional results discussed before. In finite depth
the three-dimensional sustention power approaches zero some-
what faster that in infinitely deep water.

A comparison of the resistance power for different rates
of acceleration is made in Fig. 17 (deep water) and Fig. 18
(finite depth}. For accelerated motion ovir deep water,
there is a slight increase in peak power to overcome resis-

tance, This is because the resistance peaks remain essenti-
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ally the same in magnitude, but are shifted to a hiyher speed.

At a depth to nalf- length ratio of 1.0, the resistance
power peaks are also higher in accelerated motion. A sig-
nificant reduction in the maximum resistance power occurs
only at a depth to half-length ratio of ¢C.25,.

Thus we have a situation in which the resistance hump is
considerably diminished in water of finite depth. liowever,
the new location of the hump greatly reduces any saving in

the power needed to overcome it.
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£ - APTIICATION OF SEXRLLON WATER TEDORY

I is well Tnown *that the first-order shallovw vaters
theory sroduafe 3 1oss realistic reszlts for ship save Tedis-
Tance tham *he linecrrized thaory for fimite Zepth. Thas
Mickhell (1393 252 Tock (1343 sncwed that it gredicted zero
Tesistancs Cor a boty iraveiing at lese tha, the criltical
Fpows The advanrazpe iz shaljow water theory lies Inn the
pascibility of extondizg it %20 cbtainm hicker order 2pproxi-
m2tiams 2o the Tlow, wmere the complexity ¢f the finite deoth
Teszalls would rrecladse s,

The theory was empiowel i this case o pradict the
lorative of the apgative recistanmce ump displaved in the =a-

steady zwo-dimeasismai resulzs.

6.2 ~ DERTTATION OF POTEXTiIAL:-

The nrocedare is essentiailiy the same as for the case cf

finite ceprh. since the samre set of egu2ticns, namelv Egs.

2.5), 2.7, 13.9) a=2 Z.1l%, are to Te satisfied.

ation, we

!

in 2he spirit of the shallow water aporox

shall assume an asymntotic expansicn for the disturbance
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ixctential, riz:
e+ ™, 5.1
a=}
where o) Lo i€.2)

Parthesmore, w2 shall follow Tock and siaoly tare

2 = o) . (2.3

Bere ¢ is the parameter demoting the shalilowmess of the

water sc that its definition comld e

x, ¥ =0(1) : z =0} , i6.%)

X, ¥, 2 being inside the fluid recion.

It follows from Eg. (6.4 that differentiation caa

chance the order of m2g9aitude of 2 guantitv. Thuas
= 2 z b

It&)

[l

0of1}

u.llul
o
L]
"1
»
-

i6.5)

and

O(e™ ") .

.~,|.l,
R

We mav now substitute the exvansion, Fg. 6.1), inte the

Laplace egquation, Ec. f2.5j. Due to the assumptions of
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Egs. (%.3) znd (6.5), we may separate the lowest order term

in &q. (2.37). Thus

(1)
2z =0 - (6.6)

o

Similarlv, the bed condition, Eo. (2.1i1), vields

(1)
[g 2] samd =0 . (6.7)

Frca Eas. (6.3) and (6.7) we see that @(1) is not a

function of z , i.e.

R R TR (6.8)

The serize, Fa. (6.1), is now substituted in the kine-

matic condition, Eq. (2.7). Also, the Laplace eguation gives

a _ @2 _
$ =, =0 (6.9)
(3) _ _ s o2 (1)
and & 2 = (z + 4} 7 2D A ’ (6.10)
32 32
2 = 3 d__
where Yiop < 3%z + vz

So the condition becomes
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(3) _ (1) (1) _
[¢ z] 3 z +cr =0, (6.11)

where c(l) is the first approximation to the valve of .
The lacs* boundary condition needed is the dynamic con-

dition on the free surface, Eq. (2.9}). This results in

(1) (1) 1 (1 _
[¢ g " C ¢ xJz=o+P/p+gc =0 . (6.12)

The last three equations are utilized to produce the

)
equation t» be solved for A(“):

_ 2 (L) (1) (1 _
gd [(1 91') A KX+A YY]+A et

_ (1) _aaly _ ¢
2c A S cC A x =7 Py - (6.13)

The method of solution for A{l) is similar to that

used in Sec, (2.2) for ¢ . A double Fourier transfocrm
(Egq. {2.12)) with respect to x and y is made, and this is
followed by the substitution given by Eq. (2.19}. The result

of these two operations is

itt + gd{w? + u?)y = l%F--f)-exp(-iwm(t)) . (6.14)
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The similarity between the previous equation and the
corresponding one for finite depth slhould be observed. The
Laplace transform {Fa. (2.13)) of Eq. (6.14) is taken, and
the convolution theorem applied. Then the double inverse
Fourier transform i3 used to give the first approximation to

the shallow water potential:

f i "
é(l)ix,Y;Z,t) = —2— || ¢' as’ [ -t de [ dw | an
1n2n/ad jJ | | I
s!' 0 - =
’g-sin[/g‘a-k-(t - 1) ]x
wexpli(wi{x - x' + s(LY - s{t}) + uiv = y')}1, + 75)
with k? = w? 4+ u?
SO
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6.3 - WAVE RESISTANCE:-

The first approximation to the resistance 1s just

{1 _ [D (g
J X

S

The dynamic condition on the free surface, Ea. (6.12), is now

ok

employed, as detailed in Sec. (3.2}. The final result, after

simplification is

t © o

xcos [/gd+k-(t ~ 1)].cosiw(s(t) - s{1))] . {6.16)

z, 2 2 2 2
c{r) dr | dw | du w [Pe + P24 Q7 4 QL ]

It is interesting to compare this result with that for
finite depth, namely Eq. (3.13). The shallow water result
can be obtained simply by letting d - 0 in the latter to
the extent that tanh(kd) is replaced by kd .

The steady state resistance can be obtained either as

the limit of Eg. (6.16) as t + » (if the velocity is held
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constant), or by allowing d to apcroach zero in Ea. (3.24).

The result follows:

Fyl f
R(l) R wle(P 7 4+ P 7+ Q2 +0. 7% 3w,
2“°q,’F‘2-1J e o e 0
d 0
where Pe = Pe(w,u) , etc., {(6.17)
and u = w-JEHZ -1 . (6,18)

The relation between the transverse and longitudinal

wave numbers, Eg. (6.18), shows that there is a fixed angle

between the wavefronts and the y axis. This angle is
given by
g = arccos(l/Fd) . (6.19)
If Fd < 1 there are no free waves satisfving “o. (6.19)

and the wave resistance is zero.
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6.4 - ELEVATION OF THE FREE SURFACE:-

The free surface elevation may be found from substitut-

ing the potential, Eg. (6.15), into the dvnamic condition,

Ey. (6.12). Employing the standard rules for differentiating

an integral expression, it is found that

t x
C(l) == %g + z;%;g p' ds' | c(1) dr | dw j du
3 o o
wecos[/gd-k+(t - 7)]x
xsin{w(x = x' + s(t) - s(1)) + uly - y")] . (6.20)

On the other hand, if we restrict our attention to
pressure distributions which are symmetric about the x and

y axes, such that

thern Eg. (6.20) may be simplified to
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o0 o t

(1) 1 f r

. = - %E + 20 aw J du j C(T)'W'Pex
0 0

xcos[/gdske(t - 1)]esin[w(x + s(t) - s(1))].cos(uy) at

{(6.21)

6.5 - STEADY-STATE RESIILTS:-

A comparison of shallow water and finite depth theovw
is made in Fig. 19. The case of a smooth three-dimensicnal
pressure distribution is depicted in Fig. 19a. It is seen
that a depth to half-length ratio of 0.25 is essentially
shallow if 1/F,% < 0.5 .

The wave resistance of a sharp three-dimensional disg-
tribution is shown in Fig. 19b. The convergence of the
finite depth resistance to the shallow water one is per-
hans not se ranid her~. Mointerestina feature of the
shallow woter 1e08ul' 1Ls the knuckle in the resistance curve

{he Hther esudden chanaes in slove in the
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curve are due to the fact that a finite number of points have

been computea to define it.) For this pressure distribution,

it is possible to perform the intearation in Eg. (6.17) analyt-

ically. Using Gradshteyn and Ryzhik (1965, p. 451, 3.828,

Formula 9), the result may ke written down as

Fd2
= 2- 1 £ b
Re "p'2Fz - M Fa” Fa
(6.22)
F 2
_ a . )
= -———————-2(Fd2 — 1) if Fd < Fldl ’

where F

TEnT o v
d, vYa?/b? + 1 .

Thus, the resistance is continuous at a devth Froude
number equal to Fd1 but the slope is not. It is easilv
verified that when Fd = Fd, , the wave pattern appears as in
Fig. 20. Apparently there is a reinforcement between the
bow and stern wave systems at this particular speed, causina
the observed knuckle.

In Fig. 19a a slight hump is also discernible at this
depth Froude number, but due to the finite values of the

pressure fall-off parameters the slope of the resistance

curve is continuous.
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6.6 - ACCELERATED MOTION:-

In order to examine the phenomena exhibited in the two-
dimensional wave resistance curves of Sec. (5.1), we shall
consider the free surface elevation due to the motion of a
pressure band glven by Eq. (4.2). The Kochin function, Pe ,
given by Eq. (4.8) i3 then substituted into Ea. (6.21).

The two-dimensional limit as b + «» 1is obtained, by use of

Fq. (3.18) to evaluate the u integral and the result is

.
{
;(1) = - %5 4 Eg% cw c(r)-w-cos[.ﬁﬁ-w-(t - 1)}~
o b
csinlwix + s(t) - 5“’”'51:?31?153‘}?%0 (6.23)

We now apply the formulas for the products of sincs and

cosines, twice, to give

S ey T iR aw | c(r)ewx

\cos[w(ﬁaﬁ-(t ~ ) + 3{x + s{t) - s{r) - ia})]
sinh (7w/2a) dr . (6.24)

S L . . tho eiuns  F the anprontiate

i : ave o lotal of conr erms in the Jdoukle




_——

VTG

63

summation.
The w integral may now be done using Gradshteyn and

Ryzhik (1965, p. 5il, 4.111, Formula 2):

t
(1) P r
4 =-EB_ 4 7 7 i.9B0 | (1)
Pg  j3=%1 4rd
0

xsech?[a(v/gd+(t = 1) + j(x + s(t) - s(7) - ia)}) d: . (6.25)

Further restricting our interest to a sharn pressure
band, so that o + « , it is seen that the integrand is zero

exXcept when

Ygd-(t - 1) + j{x + s(t) - s(r) - ia) = 0 . (6.26)

Let us say that this occurs when 1 =t and the velocit - of

4

the band is c¢(t;) = ¢; , while the distance traveled 1is

s(ty) = s8; . In the neighborhood of 1 = t; , we put

where +t' 1is small as o - = . The araument cf the hvper-
bolic secant in Eq. (6.25) mav then be reexpressed in the

region where t 2 t . It is just

™ = - al/gd + jey)t!
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is intearal, the

v 7t and simi

We then obhtain

subatitution is now made in Ba, (6.25) to aive

S . wycC
) 1 A —
o T .

7:‘1 4(\\} (;(I(( + 1C1)

‘-Sqn(r{}ﬁkjc 1)

sech 1" dt" . (6.27)

S

wesm H'gdbje,)

upver limit should he replaced by zero

larly for the 1 wer Limit, if

[

(1) - o [— H(a -

Here go= 1
1
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= 0
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(r,20)

if b, <« 0 or t; -~ t

3

PP T T S LY VR

. e
.z i RVAILABLE COPY




65

The wave resistance of this sharp nressure band =mav he

derivaZ from the formula:

(1 . [ (1)]
2 = 0y e lg .
2 14 =,
2D =1 4 x=1ia
The resistance ccefficient then follicws:
fiereF
) R : .
LI TR ) = . (6.3107 !
< 4 i:"!‘-.‘é-l v & j-F | |
g - .d;

and %t: 1is now the solution of

Jgd.{t - ;) + jis(®) - g(t,) + (1 -~ i) = 0. (6.21)

The chezllow water resistance is vlotted as a function
of time in Fig. 21. This is for a constant acceleration.
At one point the resistance becomes infinite, and at another
1t becomes negatively infinite. Ti.1s second veak corres-
ponds closely with the negative humo predicted by the finite
decth theorv for the same deoth and acceleration (Fia. 1l2e).

Apparently the positive hump does not show up in finite deonth
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henry, It should be roted that the positive humn in the
ahallow water theorv i1s smoother than the neaative one in
the sense that the latter has an infinite discontinuity in
function value,

Fii. 22 shows *he shane of the water surface at Aif-
forent staves of the motion of Fiao. 21. Tnitially, the de-
nression is due onlv to the static oressure under the pres-
sure band. As time procaresses a pile of water ilds un

ahead of the bhow ard this develeps int> an infinite peak at

the critical depth Froude number (F, = 1}, At the same tinre,

d

a nedative neak devsolops tu=t inside the stare, T™ie poir of
peaks causes the pasitive hwap shovn in ¥ia. 721,

Bewvond the critical sveed these oveaks crnnot keos un
with the ACV, and are seen to move Yack relative to it, At
a second critical roint in time, the bow peak passes unler
the stern of the pressure band and the resistance sudl-nlv
drops to minus infinity. Thereaftev, the water surfoce in
the vicinity of the ACV levels out, and the wave resistance
approaches zero.

An inspection of Fa. (6.30) shows fthat the peaks in the
resistance curve occur when j = -1 and ¢, =1, Look -

1
inoe now at Egq. {6.31), this can haipper when:

T Crg} 3 O =57, "I o3 T; corlier » r sihiliky
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L= -i vgd*(t - t1) - (s - s, * 2a) = 0
This case corresponds to the negative peak. 0f the two con-

ditions represented by the latter equation, the onlv one that

satisfies the relationship 0 < t; < t |is

Jgds(t - t;) - (s - s, - 2a) =0 . (6.32)

Eq. (6.32) gives the value of t when the spike of
water generated at the bow passes under the stern of the
pressure band.

If we now return to the special case of a constant ac-
celeration ¢ . Ea. (6.32) becomes a guadratic in t . The
depth Froude number which locates the negative humvo is then

given by the formula:

Fq=1+2 Jac/ad . (6.33)
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Fq. (6.33) is plotted in Figq. 23, together with some
points representing the location of the neagative hump for a
finite depth. As expected, the agreement is better for

shallower denths and sharper pressure distributions.
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7 — THE INVERSE PROBLEM

7.1 - PRCBLEM STATEMENT:-

An object of interest in the desian of an ACV is to
know th» attainable acceleration mattern as a function of the
characteristics of the propulsor. Hence, other items of
concern, such as the acceleration maragin at the hump speed,
may be deduced.

In order to make the study realistic, one must include
all the components of resistance. These were described in

Sec. (1.1). We use Newton's law to obtain

T-D, -D, - R=nmc , (7.1)

where T is the thrust available, DA is the aerodvnamic or
profile drag, Dy is the momentum drag and m 1is the mass
of the craft. The problem definition could be made more
elaborate by including, for example, an estimate of the water
contact resistance. It is emphasized here that this break-
down into drag components is only an idealization of the true
situation in which there are interactions among them.

In Eq. {(7.1), the terms on the left-hand side are func-

tions of speed, or acceleration pattern - which are unknown.

We shall assume the following forms of these resistance com=-

ponents:
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c? (7.2)

and D, =m, ¢ , (7.3)

where Ch is the acrodvnamic drag coefficient of the craft

hased on AL the frontal area, while Ca is the air den-

sity and ﬁh is the mass flow rate into the air cushion.
The program used to solve Eq. (7.1) is described Ly DMoctors
(1970, Sec. (10.3)}.

Let us now limit the numerical investigation to a singie
craft. The data are qiven meaning bv relatinag them tn a

particular {(dimensional) machine, below. The results will

also apply to any scale model of this craft.

DIMENSIONAI, VARIABLE DIMENSTONLESS "APNTARLE
P = 1.94 slugs/ft.* (base unit)
g = 32.2 ft./sec.? (base unit)
a = 20 ft. (hase unit)
b = 10 ft. h/a = 1.5
0 = 0.25 ft,7! na = 5 i
poo= 0.25 fr.7! 2a = 5 ;
W = 25,000 1bf. caa/po = A0
AP N.NN2425 siuge/ft.’ | 2t s N
gl T ' y ~m e
lﬂ 374 g 3/ 80, f | N ¢.0075
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7.2 - RESULTS FOR UNSTEADY MOTION:-

Fig. 24 shows the effect of applying three different
constant thrust levels to the ACV, At the humo sneed the
wave resistance is of the sane order as the two other draqg
components combined. Only cne other minor hump is dis-
played, as was also the case for a constant acceleration
level. Thus the character of the wave resistance curve is
not grossly affected by the nature of the acceleration pat-
tern - provided it is reasonably smooth. At the lowest
thrust level (0.06 of the craft weiaht) the acceleration mar-
gin at the hump is onlv about 0.02g which could be inade-
quate for a practical machine.

The same craft running over finite deoth is onresented
in Fig. 25. Similar general trends are displaved. However,
the thrust margin at the hump speed is sliohtlv reduced, but
thereafter the wave resistance droos somewhat faster than in
deep water,

The corresponding velocity patterns are shown in Fias.
26 and 27, The curves are quite smooth despite the humns
in the wave resistance. The effect of depth is seen to he
small for this case - the droo in velocitv in the recion of
the hump due to finite depth is less than 10%.

Some calculations were also performed usinag an enaire-
driven airscrew to push the craft rather than a constant-
thrust device. The propeller used was a four-bladed Clark Y
Section screw {Proveller Reference Number 5868-9). The

characteristics of this propeller were measured by Hartman
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and Biermann (1937). The diameter, D , was 10 ft, and the
hlades had a nominal angle of 20° at the three-quarter adial
noint. The table below lists the thrust and torauc coelftici-

ents, KT and K. , as a function of the advance railo, J

@]
where
—_ ? L
Kp = T/‘)AN D" , (7.4)
— ‘S 7 5
KQ = Q/OAN D {7.5)
and J o= o/ND 7.0)

Here 0 1is the propeller torque and N its speed in 1 :uo

luticns per unit tine,

—
J KT KQ J KT H
0 0.187 0.0189 6 n.120 0.1
0.1 0.185 0.0188 6.7 " .pa7 0.

! 0.2 0.181 0.0186 = 0.8 0.072 |
0.3 0.175 0.0185 | 0.0 | 9.045 '
0.4 0,1/1 D,0180 I [.0O 0.016 L0 T
0.5 0.14 Yool

: ; , |
L —_ s . ! — =
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Fig. 28 shows the variation of drag components with time,

assuming that the propeller absorbs a power, P , given by

P = 3.804x10° ft,1bf./sec. (692 H.P.) ,

or P/mal2g¥? = 0.6

The results are very similar to those in Fig. 24 for a cons-
tant thrust. This is bhecause the prowneller advance ratic is
still small at the hump speed - and up to this speed K,

4

and KQ are almost constant
The case of a constant propeller speed of revolution is
treated in Fiag. 29. Fig. 2%9a hows the resistance components

when the propeller runs at a speed given by

N =25,38 r.p.s. ,
r or Nv/a/g = 20 .

Again, the thrust drops only slightly in the speed rance in-
volved, so the results are similar to those for a constant
thrust, or a const-nt enagine power. In Figs. 29» and 29c
the craft is ovarloacded bv 50% and 100%, resvectivelw, Onlv
the weight (and cushion pressure) were increased, and all the
othier dimensional data were held fixed. Since the wave

drag is proportional to the square of the cushion pressure,

this component becomes relatively more important in cases of
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over toad, For the 100% overload situation, the machine bare-
ly surpasses the hump.

The case of the samne proveller speed »f revolution, but
over finite depth, is handled in Fig. 30. For a normal load
{Fig. 30a), or a 50% overlmad (Fig. 30b}), the draag components
follow quite closelv the corresponding curves for deep water
given in Figs. 2%a and 29b, respectively. However, for a
100% overload (Fiag. 30c¢) the situation is quite different in
finite depth.

Here the craft apparentlv does not overcome the resis-
tance hump in the time shown. At first, it seems to onlw
just cross the (unsteady} hump. Then the wave resistLa:ceo
rises - probably because the almost zero acceleration at this
time allows the shallow water wave pattern to build up, thus
approaching a nearly steady state. The total draa (beina
essentially the same as the wave resistance now} is areater
than the thrust so that the craft decelerates to belc the
hump speed. Without extendinag the calculation to a creal-
er time limit, it is difficult to predict wvhether th= vV
would cross the hump, approach a steadv-state sub-humo speod,
or settle down into a repetitive cvele,

The velocity pattern for the abkove-mentioned thro» lead-

inas is shown in Fias. 31 and 32, In deep water (Fis. 231)
it is sr~eon that wnile a 507 overload i telorable for this
craft, a 1202 ove: Lot =11 vrevart oo aprod e na achioy-
ed in proctice. Lol et (Fhe 72 the peal om of de-

celoration f£or 109 slot iy e e clecrly ravoalod,
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The main assumption here 1is tnat the prcepeller and en-
gine characteristics at any instant of an unsteady motion can
be estimated on a guasi-steady basis using only the 1instan-

taneous craft speed, thus ignoring inertia and ctime history

effects. (In fact, the only quantity treated in a truly un-
steady f-shion here is tne wave resistance.) Tie caiculated
results, retrospectively, seen to confirs the validisys 53 tois
assumption. The required changes in propziler speed of ro-

tation (under the constraint of constant power) and tnrust
(under the constraint of constant propeller speed) are indeed
guite small. Thus toe system of the propeller and engia2 1s

effectively operating at a nearly steady state,

-

7.3 - QUASI-STEADY RESULTS:-

One might now consider the effect of a further simpli-
fication, ramely the assumption that the wave resistance can
also be treated on a quasi-steady basis. In other words,
the wave resistance (as well as the other drag compenantsl
at any instant of the unsteady motion is assumed tc be in-
dependent of accelerztion and time history - and just equal
to the steady-state value at the instantaneous velccityv.
This technique could make use of the steady-state results

previously calculated in Sec. (4.3}, which incidentaliv
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require much less computational effore.

Fig. 3! 1= the jaasi-steady analog of Fig. 24 and shows
tne drug components over Jeep water for taree differcnt
thirust levels. feiv s zmeneraxiy iittle diiforence 1n the
resultans motlon vecause, 3Is was seen in S oo (3.2), thie smag-
nitude of the hurmo resistence in deep water 1s only slightiy
affected by this range of accelerazion. Moreover, tae low

speed unsteady resistance curve tended to pass througn thwe

reslsians e

rr
v
ot
v

average value of tae oscillating steady-s

curve, and the effect of smzll local osciilations 1m0 is-

b

tance tends to be averaged out in the rosultant velocity par-
tern.

The effact of finite depth is snown 1n Fig. 34. Tha
difference compared witn the zriuly uastecady calculation
(Fig. 25) is more discernible 10w - because of the higher
steady-state hump oncountered in the guasi-steady calvula-
tions. This aspect 15 more clearly scen in Figs. 37 ani e

which display the velocity natterns for deep wabter and

depth, ruesgectively. For conparison, the unsteady ~urves
are also shown. In deey water there 1s little cifforvence,

but for dfa = 0.5 , tue palterns sewarate siightls - -ro 2t
the hump speed for the reasons citel sbove.

Tae result of emvloying the propeller previcasl- des-
crined (wWitan a conztant spead of revoluation) is shown in

o s e . s e i PRI ST I As was ot i
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propellier produces an aimost constant thrust. In deoen water
the guacsi-steady and unsteady results (Fig. 29) are again
similar.

For d/a = 0.25 , the motion of a normally loaded craft
compares with that for the unsteady calculation (Fig. 30a).
fowever, for a 50% overload, the aguasi-steady calculation

-

predicts that the ACV can only aciiieve a sub-hump speed while
the unsteady theory (Fig. 30} shows tnat the ACY, in fact,
has a practical thrust nargin to surpass the hump rosistanco.
In the case of 100% overload the unsteady result (Fia. 30c)
shows that the machine i1s in a maraginal position regarding its
ability to achieve a vractical cruising speed. The quasi-
steady calculation, on the other hand, would indicate that
the craft considerably lacks the abkility to cross the hump -
it would secenm to have only about half of the thrust required.
The velocity patterns for a constant propeller speed of
revolution are shown in Fig. 39 (deep water} and Fig. 40
(d/a = 0.25). These clearlv indicate the marked diffoerence
between the predictions of the cuasi-steadv and unsteadv cal-

culations ~ pasticularlv for finite depth.
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8 - CONCLUDING REMAKRKS

8.1 - CONCLUSIONS:-

A laroe number of results have been presented, and the
reader is referred to the appropriate section for the de-
tails. lHowever, some general remarks should now be made,
and the first of these concerns the degree of smoothing re-

quired to eliminate the low speced oscillations in the steadv-

state wave resistance curves,

Reference is now made to Fig. 2 showino the precsure
distribution. We shill take fa = « since this raramneter
hardiv affects the resistance. The slope of the free sur-

face at the center of the bow (x = a, v = 0), at zero speed,

is then given by

o= 9o {l - sech2(2ma)] .

For ~a ~ 2 the second term mayv be dronped to give

roox QPO (8.1)

me caleulati v tones {1008y Yo emer e, indig-
il Ll ormere,

Tor tvpli-al  ve, the rabao nasp, e about 40, enge
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Eg. (8.1) would vield aa = 80 as a general value. The con-
clusion in this regard then, is that a reasonahble amount of
smoothing is not sufficient by itself to eliminate the low
speed humps and hollovs, Other effects, such as nonlinearitv
and real fluid properties, mav have to be invoked to exrlair
the discrepancv.

It is evident, however, that the use of lov values eof
a2 and pa (about 5) deoes improve the agreerent betieen cal-
culated and observed steady-state wave resistance curves, of-
pecially at lower speeds. Thus the use of such values, oven
if unnecessary fror the point of viev of accurate pressure
modeliing, could still be justified if ga and ra are re-
garded as semi-empirical factors introduced to effectively
eliminate the unrealistic linear effects at lov I'roude num-
bers. ™o advantages will accrue.

First, the inverse problem can be treated with morc con-
fidence since it requires a continuous calculation of wave
resistance for the entire speed range beginning from zero and
one can avoid the unrealistic phencmena which would occur for
a sharp pressure distribution.

Second, the computational effort involved in evaluatinc
the various integrals is considerablv reduced due to the ex-
ponential decav of the integrands at infinitv if «a and :3a
are finite and small, In fact the correspondina calculations
for a sharp pressure distribution would be formidable, as dis-
cussed in Sec. (8.2). Thus there is also a practical and

economical advantage in the use of these adjustable constants,
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“'cst of the figures show a marked similarity between the
two- and three-dimensional results. Thus the transversc wave
system plavs a large role in contributing to the energy radi-
ation for the usual beam to length ratios of ACVs. On the
other hand, the diverging waves are sufficiently important to
prevent the occurrence of negative wave resistance durinag ac-
celerated motion of the craft from rest in finite deptl.

The effect of acceleration level on the wave resistance
is qguite marked. Normal accelerations of up to 0.lc¢ are
sufficient to eliminate rost of the low speed humps. hlso,
the high resistance peak at the critical depth Froude number
is limited to a much smailer value in accelerated motion.

However the resistance peak is displaced to a higher
speed so that the power needed to overcome it is hardly
diminished, except in verv shallow water.

On the other hand, the practical design of an ACV results
in the prorpulsive efficiencv being a maximum near the desicn
speed. At low speeds, up to the hump, the thrust is essenti-
ally constant. Hence the critical thing is the peak wave
resistance - and not the peak power to overcome it. This wos
borne out by a comparison of the unsteady and quasi-stond.
theories for the solution of the inverse problem in finite
depth. Under certain circumstances the ACV could easil-
cross the hump, coven though tho quasi-steaidy theorv prodicted

obihereaias,
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B.2 - FUTURE WORK:-

It would be worthwhile to run some experiments to veri-
fy the calculations for accelerated motion, Either the
direct or inverse case could be tested since the theory is
equally valid for botth. Correction for the additional drag
components is one of the problems to be contended with.

A particular case that should be examined is the two-
dimensional one, It should be interesting to see how ac-
curately the theory predicts the phenomenon of negative wave
resistance.

A few comments should also be addressed tc the problem
of computing the integral in Eq. (3.13). The convergence of
this integral deteriorates for large values of t , o« and
B . This is because of the exponential decays in the ¥ochin
function, Eq. (4.8). The Gauss-Laguerre cguadrature rules
used are based on these decays. Thus the majority of the
resistance curves for accelerated motion, given in the figures,
employed a rule of order 2048 for the w integral, and a rule
of order 16 for the u integral. However, an estimation of
the truncation error showed that, in fact, only the first 102
and 9 points, respectively, were needed for a three-figure
accuracy. Generally, a 129-point trapezoidal rule was used
in the 1 1integral.

This combination of rules was found to be the best, al-
though it would be useful to investigate other numerical quad-
rature schemes.

Because of the limitations of the numerical method -
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specially for large t - an alternative technique of evalu-
ating the integral should be considered. For valucs of the

velocity somewhat greater than the main hump speed, it should
be possible to construct an asymptotic expression for the
wave resistance (for large t}. For the inverse problem,
the asymptotic formula would have to be based on an extra-
polated velocity pattern (which could be corrected iterat-
ively).

Finally, it may be remarked, that a nonlinear theoretical
treatment of the problem would reveal more about the low speed
oscillations in the resistance curve predictcd by the lincar
theory.

Following Wehausen (1963), one could assume the poten-
tial to be a power series in terms of a perturbation para-
meter such as ps/nga or po/pc? . It should then be fair-
ly straightforward to construct a linear scheme of succe:s-
ively higher approximations as has already heen done for thi~
case of a ship ir steady motion. In fact, there is cood
reason to believe that due to the absence of the hul’ bound-
ary condition, the numerical evaluation of the resultina in-

tegrals here would be somewhat simpler than for a sbhin.
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Fig. 25 Drag Components in Finite Depth (Constant Thrust)
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Fig. 28 Drag Components in Deep Water (Constant Prop. Powe! )
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P O AWE-Pa
This repart is oonfotned with the theoretical wave resistance of an

-omssi mehicle {(XCY) travelins over wazter of unifcrz finite 7r in-
ite depth, in steady or unmsteady moticn. Referrinc first to sieady
motiom, it 1s showa that the =znrezilistic coscillaticms is the wave recis-
tance Carve 21 icw Froude numdwrs found by previcus vorrzers can be cliir-
inated by wsing a smocthed ocut rressure Sissribeticn rather than one
with sharp 2dces siundied exclusive:vy in the past. The main result of
uarteady notion calcilations is that the pea¥ wave resistance in shal-
iow water, even in mcderataly accelsrated notisn, is appreciatly less
than the ccrresponding steady-state value, In fact, cases have been
found where 2n ACY starting from res: under the acticn of 2 constant
thrust vould seex to be unarle o cross the critical depth Froude number
o the basis of quasi-steady estirates =i wave resisiance, while the
more elaborate unsteady calculations show that it has sufficient ower
to reach i1ts final svpercritical cruising spoeed. An interesting fca-
tore of cnsteady motion is that bhesides wave resistance there is an-
cther mechanisz transferring enercy o the free surface which 1s here
cailed the Cynamic sustenticn rower. Contrary <o inwuvition, the wave
resistance in unsteady motion ocver finire depth socmetinmes bhecomes neco-
ive at supercritical Froude aumbers before finally approaching zero
t infinite speed.
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